Shaders Specification

2004-09-05

Shader components used for passing parameter to Vertex and Pixel shaders and for other purpose.

Shader components:				
Component name	Number of floats per component	Indexing	Only for light pass	Description
LightPos	1	X	X	Light position in World space
OSLightPos	1	X	X	Light position in Object space
LightIntens	1		X	Light intensity for the current light
InvLightIntens	1		X	Inverse Light intensity for the current light (1/LightIntens)
LightColor	1	X	X	Light color of the current light source. Result $=$ LightColor $*$ MatDiffuseColor
SpecLightColor	1	X	X	Specular Light color of the current light source. Result $=$ LightSpecularColor * MatSpecularColor
AmbLightColor	1	X		Ambient Light color of the current light source. Result $=$ ObjectAmbColor $*$ MatAmbColor
EngLightColor	1	X	X	Engine Light color of the current light source. Result $=$ WorldColor $*$ LightColor $*$ MatDiffuseColor * ObjectColor;
EngLeavesLightColor	1	X	X	Engine Light color specially for plant leaves of the current light source. Result $=$ WorldColor $*$ LightColor $*$ MatDiffuseColor * ObjectColor / 1.5f;
EngAmbColor	1	X		Engine Ambient color. Res $=$ Eng->GetWorldAmbientLevel ();
EngLeavesAmbColor	1	X		Engine Ambient color specially for leaves. Res $=$ Eng->GetWorldAmbientLevel () / 1.5f;
ObjColor	1	X		Color of the current object. Engine should place the values in m_{-}Color member of the object.

Wave	1		Value evaluated by wave rules: Comp 'Wave' (Type $=$ Sin Level $=0.5$ Amp $=0.1$ Phase $=0$ Freq $=0.01$) Here: Type - wave type; Level - constant level of the wave; Amp - Amplitude of the wave; Phase - start time phase of the wave; Freq-frequency of the wave;
ObjWaveX, ObjWaveY	1		Waves from the object. For each object we can specify two wave parameters. This parameters currently hardcoded in engine and used for plants bending in X and Y directions respectively..
FromRE	1	X	Value from the current render element. Engine should add appropriate data to the render element.
FromObject	1	X	Value from the current object. Engine should add appropriate data to the object.
ObjRefrFactor	1		Refraction factor from the current object.
Time	1		Real time value. Has format "Time fScale". Here fScale - time scale. (for example "Time 0.2")
Distance	1		Distance from the current object to the camera. Has format "Distance fScale". Here fScale distance scale. (for example "Distance 0.5")
VolFogColor	1	X	Color of the current fog volume.
VolFogDensity	1		Density of the current fog volume.
FogStart	1		Start distance of the globalfog.
FogEnd	1		End distance of the global fog.
FogRange	1		Range of the global fog.
CameraAngle	1		Angle of the camera. Format: "CameraAngle sSign iInd cOp fValue". Here: sSign - "neg" - negative, "pos" - positive; iInd - index of the angle (0, 1 or 2); iOp - current operation: +, -, * or $/$. fValue - current value for the operation. For example "CameraAngle neg $2 * 4$ " means Value -CameraAngle[2] * 4;

CameraPos	1		Position of the camera. Format: "CameraPos sSign ilnd cOp fValue". Here: sSign - "neg" - negative, "pos" - positive; iInd - index of the angle (0,1 or 2); iOp - current operation: +, -, *or $/$. fValue - current value for the operation. For example "CameraPos neg $2+3.5$ " means Value-CameraPos[2] + 3.5;
OSCameraPos	1		Position of the camera in the object space. Format: "CameraPos sSign iInd cOp fValue". Here: sSign - "neg" - negative, "pos" - positive; iInd - index of the angle (0,1 or 2); iOp - current operation: +, -, * or $/$ fValue - current value for the operation. For example "CameraPos neg $2+3.5$ " means Value-CameraPos[2] + 3.5;
ObjPos	1		Position of the current object. Format: "ObjPos sSign iInd cOp fValue". Here: sSign - "neg" - negative, "pos" - positive; iInd - index of the angle (0,1 or 2); iOp - current operation: +, -, * or $/$. fValue - current value for the operation. For example "ObjPos pos 0-1.2" means Value ObjPos[0]-1.2;
SunColor	1	X	Sun color value. Has format "SunColor fScale". Here fScale - color scale. (for example "SunColor[0] 0.2")
WorldColor	1	X	World global color value.
WorldObjColor	1	X	World color value multiplied with current object color.
ObjVal	1	X	Different useful variables in the current object. Engine should place value(s) in m_TempVars member of the object.
GeomCenter	1	X	Center of the current geometry in world space.
WaterLevel	1		Current water level value. Used for water shaders.
Bending	1		Bending factor of the current object. Engine should place the value in $m_{-} f$ Bending member of the object.
Bending	1		Bending factor of the current object. Engine should place the value in $m_{-} f$ Bending member of the object.
Halfangle	1	X	Half angle vector for the current light source. Res $=$ Normalize(LightPos + EyePos $)$;
BumpAmount or BumpScale	1		Shader bump scale value. By default it's 1. Can be changed in shader script.

